SPECIFICATION DIVISION 28

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>SECTION DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DIVISION 28 ELECTRONIC SAFETY AND SECURITY</td>
</tr>
<tr>
<td></td>
<td>SECTION 283102 - FIRE DETECTION AND ALARM SYSTEM (HOSPITAL PROJECTS)</td>
</tr>
</tbody>
</table>

END OF CONTENTS TABLE
DIVISION 28 ELECTRONIC SAFETY AND SECURITY
SECTION 283102 - FIRE DETECTION AND ALARM SYSTEM (HOSPITAL PROJECTS)

DELETE FROM AND ADD TO THIS SECTION TO MAKE IT PROJECT SPECIFIC. HIDDEN TEXT DIRECTIONS INDICATE SOME BUT NOT ALL OF THE REQUIRED EDITING. DELETE THE HIDDEN TEXT DIRECTIONS BEFORE PRINTING FOR PUBLICATION.

VERIFY THE TYPES, QUANTITIES AND LOCATIONS OF FIRE ALARM COMPONENTS SHOWN ON PLAN DRAWINGS COMPLY WITH THE SYSTEM DESIGN REQUIREMENTS BELOW. REFER TO THE UMHHC DESIGN GUIDELINES FOR SPECIAL REQUIREMENTS THAT MAY NEED TO BE ADDED.

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

INCLUDE PARAGRAPH 1.1.A AND B IN EVERY SPECIFICATION SECTION. EDIT RELATED SECTIONS 1.1.B TO MAKE IT PROJECT SPECIFIC.

A. Drawings and general provisions of the Contract, Standard General and Supplementary General Conditions, Division 01 Specification Sections, and other applicable Specification Sections, in particular the Related Sections listed below, apply to this Section.

IN 2 BELOW, SELECT PROPER COMMISSIONING SPEC SECTION NUMBER APPLICABLE TO THE PROJECT OR DELETE IF Cx IS NOT REQUIRED.

B. Related Sections:
1. Section 017823 - Operation and Maintenance Manual
2. Section 019100/019110 - Commissioning
3. Section 260513 - Medium, Low & Control Voltage Cables
4. Section 260526 - Grounding and Bonding for Electrical
5. Section 260533 - Electrical Materials and Methods
6. Section 260800 - Electrical Acceptance Tests

1.2 SUMMARY

DUPLICATE PARAGRAPH 1.2.A IN THE GENERAL NOTES ON THE FIRST SHEET OF THE ELECTRICAL DRAWINGS.

A. The project delivery method for fire detection and alarm systems shall be by design-build. This specification section and accompanying drawings establish the minimum requirements and boundary for the design-build scope of work. Provide all equipment, devices, appliances, wiring and materials necessary for a complete and expandable system which adheres to applicable codes, standards and University of Michigan requirements.

1. The quantities, locations, types, conditions and manufacture of existing fire alarm equipment, devices and appliances shown are for information only and shall be field verified.
2. The quantities, locations and types of new fire alarm equipment, devices and appliances shown are minimum requirements. Provide all additional equipment, devices, appliances, materials and labor required to meet applicable codes.

3. Coordinate with and provide submittals to the Michigan Bureau of Fire Services, Ann Arbor Fire Department, U-M Fire Marshal and FM Global as required. Coordinate room occupancy and space utilization with the building's Facility Manager.

IF THE BUILDING WILL REMAIN OCCUPIED DURING THIS WORK, INCLUDE THE FOLLOWING PARAGRAPH.

4. Maintain the existing fire alarm system in service while the new work is installed, tested and made operational.

ON FIRE ALARM RENOVATION PROJECTS, DELETE ALL OF 1.2.B AND THE NON-APPLICABLE PARAGRAPHS OF 1.2.C.

B.

Provide a new fire alarm system with the following features:

1. A main fire alarm control panel (FACP).
2. Node and notification appliance circuit (NAC) panels.
4. Audible and visual notification appliances.
5. Control inputs and outputs to ventilation systems.
7. Alarm, supervisory, trouble, fire pump running and maintenance alerts outputs including addresses and locations of initiating devices to the University of Michigan Hospitals and Health Centers (UMHHC) Facility Command Center (UHFCC) located in University Hospital Building Room 1A203.
8. Remote alarm silence and remote emergency voice/alarm communications capability from the UHFCC.
9. Raceways, junction boxes, wiring and accessories as shown on the drawings and as required for a complete and operable system.
10. System programming in accordance with the system's sequence of operation.
11. System programming and testing required for the system to communicate with the operator interfaces in UHFCC.

ON PROJECTS PROVIDING A NEW FIRE ALARM SYSTEM, DELETE ALL OF 1.2.C.

C.

Renovate the existing fire alarm system by providing the following:

1. A pre-renovation test of the existing system to document the condition of the system before it is changed.
2. A main fire alarm control panel (FACP).
3. Node and notification appliance circuit (NAC) panels.
5. Audible and visual notification appliances.
6. Control inputs and outputs to ventilation systems.
7. Status monitoring of fire pump controllers, sprinkler flow switches, and sprinkler valve tamper switches.
8. Alarm, supervisory, trouble, fire pump running and maintenance alerts outputs including addresses and locations of initiating devices to the University of Michigan Hospitals and Health Centers (UMHHC) Facility Command Center (UHFCC) located in University Hospital Building Room 1A203.

9. Remote alarm silence and remote emergency voice/alarm communications capability from the UHFCC.

10. Raceways, junction boxes, wiring and accessories as shown on the drawings and as required for a complete and operable system.

11. System programming as required to incorporate changes to the system's sequence of operation.

EDIT 1.2.D AND E TO MAKE THEM PROJECT-SPECIFIC.

D. Provide the following additional work where shown on the drawings:
 1. Remote annunciators.
 2. Control outputs to smoke control system devices.
 3. Status lights indicating the current status of smoke control system devices.
 4. Auxiliary controls to manually override the control outputs to smoke control system devices.
 5. Control outputs to interrupt power to electrically operated access control door hardware devices.
 6. Non-battery backed power to door hold-open devices.
 7. Emergency voice/alarm communications.

E. The following work is not included unless shown otherwise:
 1. Smoke and heat detectors that initiate an elevator recall.
 2. Smoke and heat detectors that actuate a fire suppression system.
 3. Electrically operated door hardware devices.
 4. Power to electrically operated door hardware devices.
 5. Door hold-open devices.

1.3 RELATED SECTIONS

A. The drawings and the general provisions of the contract, including the current edition of the University of Michigan Standard General Conditions, apply to this section.

B. The applicable requirements of the other Division 26 specification sections, including the following, apply to this section.
 1. Section 260500, "Basic Electrical Materials and Methods".
 2. Section 260513, "Cables and Wires".
 3. Section 262700, "Service and Secondary Distribution".
 4. Section 260526, "Grounding".
 5. Section 260800, "Electrical Acceptance Tests".

1.4 REFERENCES

A. Comply with the current versions of the following codes and standards as applicable:

2. MBC, "Michigan Building Code".
3. MEC, "Michigan Electrical Code".
4. MMC, "Michigan Mechanical Code".
5. "Michigan Rehabilitation Code".
7. NFPA 13, "Standard for the Installation of Sprinkler Systems".
8. NFPA 20, "Standard for the Installation of Centrifugal Fire Pumps".
9. NFPA 72, "National Fire Alarm Code", except as follows:
 a. Smoke detectors that initiate an elevator recall shall not be connected to the fire alarm system.
 b. Smoke and heat detectors shall not be required above suspended ceilings.
 c. Horns or speakers shall not be installed in elevator machine rooms. Horns shall not be installed in elevator cars.
 d. Fire alarm system shall not shut down power to the elevators.
 e. Optional smoke detectors in rooms with beam pockets should be spaced as shown on the plan drawings.
11. UL 217, "Single and Multiple Station Smoke Detectors".
12. UL 268, "Smoke Detectors for Fire Protective Signaling Systems".
13. UL 268A, "Smoke Detectors for Duct Applications".
14. UL 464, "Audible Signal Appliances".
15. UL 521, "Heat Detectors for Fire Protective Signaling Systems".
16. UL 864, "Control Units for Fire Protective Signaling Systems"
17. UL 1480, "Speakers for Fire Protective Signaling Systems".
18. UL 1971, "Signaling Devices for the Hearing Impaired".

B. For classroom, in-patient medical and Housing projects, comply with the applicable sections of NFPA 101, "Life Safety Code" as adopted and amended by the Michigan Bureau of Fire Services.

C. For systems that provide partial evacuation or relocation of occupants rather than full evacuation, comply with the NFPA 72 requirements related to survivability from attack by fire.
1. Designate each notification appliance circuit to serve no more than one notification zone.
2. Protect power supply and notification appliance circuits from fire until they enter the notification zone they serve.
3. Monitor the integrity of audible and visual notification appliance power supplies, audio generators, amplifiers and circuits.
4. Monitor the integrity of Fire Department telephone communications circuits.

1.5 SYSTEM DESIGN REQUIREMENTS
A. The system shall be power limited.
B. Provide a fire alarm control panel with the following:
 1. Digital display.
2. Multiple pushbutton keypad.
3. LED status indicating lights.
4. Audible status signals.
5. Output relays.
6. Battery charger and batteries.
7. RS-232 communications card.

C. Provide Class B, Style 3, signaling line circuits.
 1. Provide sufficient spare capacity on each signaling line circuit for an additional 25 percent of initiating and control devices.

D. Provide Class B, Style Y, notification appliance circuits.
 1. Size the control panel power supplies, amplifiers and batteries for 25 percent spare capacity calculated with 40 ma horn loads, 1 watt speaker loads and 150 ma strobe light loads.
 2. Provide sufficient spare capacity on each notification appliance circuit for an additional 25 percent of notification appliances.

E. The system shall supervise the following circuits and components:
 1. Initiating device circuits.
 2. Signaling line circuits.
 4. Addressable initiating and control devices.
 5. Control output wiring.
 6. Auxiliary control switches.
 7. System node panels, NAC panels, remote annunciators and remote microphone panels.
 8. Primary power supply.
 9. Secondary power supply.

F. The system shall be capable of being programmed by the Owner on site to accommodate expansion or sequence of operation changes.

G. Provide 120 volts AC primary power to the system from a dedicated emergency power branch circuit.

H. Provide a control panel battery charger capable of fully charging a 200 amp-hour battery within 24 hours.

I. Provide sufficient secondary power battery capacity to operate the entire system (except the door hold-open devices) upon the loss of primary power for a period of 24 hours in a normal supervisory mode followed by 5 minutes of evacuation alarm operation.
 1. When emergency voice/alarm communications is provided, provide sufficient battery capacity for 24 hours of operation in a normal supervisory mode followed by 15 minutes of voice/alarm operation.
 2. The system shall automatically transfer to and from the secondary power batteries upon an interruption of primary power without initiating a nuisance alarm.
 3. The system shall delay initiating a trouble condition for two seconds upon a transfer to or from primary power to avoid nuisance trouble conditions during emergency generator testing.
J. Provide smoke and heat detectors as required by code and as shown, including the following.

1. Provide smoke detectors in each elevator lobby and in each elevator machine room to duplicate the elevator recall detectors provided as part of the elevator system. Do not provide smoke or heat detectors in elevator shafts.
2. Provide two heat detectors, one in front and one behind, each unit substation transformer.
3. Provide smoke detectors in each mechanical, electrical, telecommunications, trash collection and recycling room.
4. Provide smoke detectors in residence hall corridors, each sleeping room, and immediately outside each sleeping room located within a suite or apartment.
5. Provide duct smoke detectors where required by code. When not in plain view or more than 10 feet above the floor, provide duct detector remote alarm indicators and test switches mounted in plain view at 48 inches above the floor.

K. Provide sufficient audible notification appliances to achieve a sound level of 15 dBA above ambient sound level, but not less than 60 dBA nor more than 110 dBA. The sound level in mechanical rooms shall be not less than 90 dBA, and in sleeping rooms shall be not less than 75 dBA measured at pillow level. The sound shall be a temporal code three slow whoop or pulsed evacuation signal.

1. In rodent rooms, the sound shall be a slow whoop or warble with a peak frequency below 500 Hz.
2. Do not provide horns or speakers in exit stair enclosures.
3. Do not provide horns or speakers in elevator machine rooms or in elevator cars.
4. Provide a speaker in each sleeping room and a sounder base in each sleeping room smoke detector. The speaker shall provide the general alarm and the sounder base shall alarm upon smoke in the room.

L. Provide visual notification appliances in accordance with the intensity and spacing requirements of NFPA 72.

1. Provide strobes in all public areas including multi-person offices, but not in exit stair enclosures and animal rooms.
2. Combine horns or speakers with strobes when both are required at the same location.
3. Synchronize strobes when more than two appliances are in any point of view and are less than 55 feet apart.
4. Provide strobes in elevator machine rooms.
5. Provide strobes in accessible sleeping rooms and in living spaces of accessible suites or apartments.
6. Provide strobes in mechanical rooms and other areas that have an average ambient noise level exceeding 60 dBA.

DELETE THE FOLLOWING PARAGRAPH IF NOT APPLICABLE.

M. Provide a waterproof horn/strobe or speaker/strobe with waterproof back box on the exterior of the building between 8 and 12 feet above the fire department connection. Audible sound shall be 90 dBA minimum at 10' and visual intensity shall be 110 candela. Program this device to alarm upon sprinkler system water flow only, and to cease operation upon termination of water flow.
N. Provide individually addressable monitor modules to monitor non-addressable initiating devices and status contacts of other systems.
 1. Monitor modules shall use Class B, Style B initiating device circuits to monitor the initiating devices and status contacts.
 2. When interconnecting with an existing fire alarm system control panel, provide monitor modules as required so new and existing control panels function as a single system.

O. Provide panel auxiliary relay contacts and individually addressable control module contacts to interface with control circuits of other systems and equipment.
 1. Provide normally closed duct smoke detector contacts to shut down ventilation systems.
 2. Provide normally open auxiliary relay or control module contacts to start smoke control systems.
 3. Provide normally closed auxiliary relay or control module contacts to release electrically held door locks and door hold-opens, and to disable electrically operated door proximity sensors.
 4. When interconnecting with an existing fire alarm system control panel, provide control modules as required so new and existing control panels function as a single system.

P. Provide control panel On/Off/Auto switches with "On" and "Off" or "Open" and "Closed" LED indicators for overriding the normally open contacts that start smoke control systems.
 1. In the Auto position, the contacts shall operate in accordance with the fire alarm system program. In the Off position, the contacts shall remain open. In the On position, the contacts shall close to test the controlled equipment.
 2. The LED indicators shall indicate the status of the controlled equipment in accordance with the MMC.
 3. Turning any switch out of the Auto position shall initiate a system trouble condition.

Q. Assign each initiating device a unique device address.

R. Develop a custom location label for each initiating device that describes the type, floor, room number and exact location of the device.
 1. If the device is in a corridor or similar large space, state device is by Room (NAME/NUMBER).
 2. If room numbers are not available, provide compass directions and references to unique building features.

S. Provide transient voltage surge suppression for the system.

1.6 SYSTEM PERFORMANCE REQUIREMENTS

A. Under normal conditions, the control panel digital display shall display a "SYSTEM NORMAL" message and the current time and date.

B. Should an abnormal condition be detected, the appropriate alarm, supervisory, or trouble panel LED shall flash and the appropriate panel audible signal shall sound.
C. The appropriate panel alarm, supervisory, trouble or supervisory maintenance alert outputs including addresses and locations of initiating devices shall be sent via fiber-optic cable (by others) for viewing at the University Hospital Facility Command Center (UHFCC).

D. The fire alarm control panel shall manage all input and output signals through software programming and hardware configuration. In addition to managing and supervising the fire alarm devices, the control panel shall be configured to trigger an alarm when the fire pump runs.

E. The panel shall display the following information relative to the abnormal condition:
 1. Custom location label (40 characters minimum).
 2. Type of initiating device.
 3. Type of abnormal condition (alarm, supervisory or trouble).

F. If the abnormal condition is an alarm, the following actions shall occur:
 1. Audible notification appliances shall sound throughout the building.
 2. Visible notification appliances shall flash throughout the building.
 3. Control outputs to mechanical systems shall perform their programmed functions.
 4. Control outputs shall interrupt power to electrically operated door hardware devices.
 5. Power to door hold-open devices shall de-energize.

G. Pressing the appropriate Acknowledge pushbutton shall acknowledge the alarm, supervisory or trouble condition unless the system is in the silence inhibit mode. Once acknowledged, the appropriate LED shall latch on and the panel audible signal shall be silenced.

H. If the abnormal condition is an alarm, pressing the Silence pushbutton shall silence the audible notification appliances and stop the visual notification appliances from flashing.

I. In addition to the Acknowledge and Silence pushbuttons available on the fire alarm control panel, the fire alarm system head end equipment in the UHFCC shall be capable of acknowledging and silencing the system remotely.

J. Upon a subsequent abnormal condition from another device, the appropriate panel LED shall flash, the panel audible signal shall again pulse and the panel display shall show the new abnormal condition.

K. After all of the points have been acknowledged and silenced, the LED's shall glow steady and the panel audible signals shall be silenced. The total number of alarms, supervisory, and trouble conditions shall be displayed along with a prompt to review each list chronologically. The end of the list shall be indicated.

L. Pressing the System Reset pushbutton shall return the system to its normal state if the abnormal conditions have been remedied.
1. The display shall step the user through the reset process with simple English language messages. Messages including "IN PROCESS", "RESET COMPLETED", and "SYSTEM NORMAL" shall provide operator assurance of the sequential steps as they occur.

2. The ventilation system motors shall restart sequentially.

3. The outputs to control circuits of other systems and equipment shall return to normal.

4. When interconnecting with an existing fire alarm system control panel, resetting shall not require the simultaneous operation of reset pushbuttons or switches on multiple control panels, or the disconnection of wiring.

M. Should an abnormal condition continue to exist, the system shall remain in an abnormal state. The system control relays shall not reset. The panel LED's shall remain on. The display shall indicate the total number of alarm, supervisory and trouble conditions present in the system along with a prompting to review the points. These points shall not require acknowledgment if they were previously acknowledged.

N. Should a trouble condition continue to exist, the trouble audible signal shall resound at preprogrammed time intervals to act as a reminder that the fire alarm system is not 100 percent operational. Both the time interval and the trouble audible signal shall be programmable to suit the Owner's application.

O. Should the Alarm Silence Inhibit function be active, the System Reset pushbutton shall be ignored and a "RESET INHIBITED" message shall be displayed for a short time to indicate that action was not taken. For operator assurance, a "RESET NO LONGER INHIBITED" message shall be displayed when the inhibit function times out.

1.7 ITEMIZED QUOTATION

A. Submit with your bid an itemized cost breakdown listing all major component costs, labor costs (including subcontractor labor and material costs), and engineering costs, for base bid and for each alternate, for the entire fire alarm system scope of work. When requested, provide an itemized breakdown to the Owner post-bid for review and approval.

1.8 SUBMITTALS

A. Submit for approval copies of the following shop drawings and product literature. Shop drawings shall contain title blocks identifying the project name and number. Submittals shall be marked to indicate the specific models, sizes, types and options being provided. Submittals not so marked and incomplete submittals will be rejected.

1. Plan drawings showing the locations (with room numbers) of the system components, including any adjustments in the quantities and locations of initiating devices and notification appliances to meet code requirements.

2. Riser diagram showing system components, interconnecting wiring and connections to other building systems and equipment.
3. Wiring diagrams showing manufacturer and field connections at component terminals, complete with conductor color codes and wire numbers.
4. System configuration list showing inputs, outputs, device addresses and custom location labels, device configurations and program logic.
5. Bill of materials.
6. Catalog pages showing system components.
7. System battery sizing calculations.
8. Power supply, amplifier and circuit sizing calculations.
9. Door hold-open power supply sizing calculations.

ON FIRE ALARM RENOVATION PROJECTS, DELETE ALL OF 1.9.

1.9 EXTRA MATERIALS

A. Provide to the Owner the following extra materials matching the products installed, packaged in protective coverings for storage, and identified with labels clearly describing the contents. Provide 1 percent of the installed amount of each with a minimum of one of each.

1. Fuses: Each size and type used in the system.
3. Detector Bases.
4. Detector Heads: Each type used in the system.
5. Addressable Monitor and Control Modules: Each type used in the system.
6. Notification Appliances: Each size and type used in the system.
7. Output Relays.

B. Provide one data cable for connecting a lap top computer to the fire alarm control panel's RS-232 communications card so that the Owner can perform panel programming.

1.10 RECORD DOCUMENTS

A. Submit four copies of record drawings showing the locations of fire alarm devices and appliances, the locations of end-of-line resistors and junction boxes, the addresses of addressable devices, the tap settings of audible notification appliances, the intensity ratings of visual notification appliances, the sizes of conduits and conductors, circuit numbers, and deviations from the design.

B. Submit four printed copies of the final system configuration list showing inputs, outputs, addresses, custom location labels, device configurations and program logic.

C. Submit electronic, Windows based files with the following final system software:

1. The master program generic to the model of system being provided.
2. The building specific program containing the unique information for the system being provided.
3. A software license and the system passwords required by the Owner to perform programming changes.
1.11 OPERATIONS AND MAINTENANCE MANUALS
A. Submit for approval four copies of operations and maintenance manuals for the specified system and equipment prior to startup. The manuals shall be the same manuals used by the Manufacturer's field service technicians. The manuals shall be marked to indicate the specific models, sizes, types and options that were provided. Manuals not so marked will be rejected.

1.12 QUALITY ASSURANCE
A. The fire alarm system shall be the standard product of a single fire alarm system manufacturer who has been producing this type of equipment for at least 10 years, and has a fully equipped service organization within 150 miles of the Owner. Each component shall display the manufacturer's name.
B. Each fire alarm system component shall be listed under the appropriate standard of Underwriters Laboratories and shall bear a UL label.
C. The fire alarm system shall be UL labeled as a system and approved by FM Global.

DELETE THE FOLLOWING PARAGRAPH IF NOT APPLICABLE.
D. For classroom, in-patient medical and Housing projects, the fire alarm system shall also be approved by the State of Michigan Bureau of Fire Services.
 1. Submit shop drawings to the Michigan Bureau of Fire Services for approval.
 2. Arrange for a Michigan Bureau of Fire Services Inspector to inspect the system installation and testing.
 3. Submit to the Owner a copy of the FS-12A Form submitted to the Michigan Bureau of Fire Services.
E. The fire alarm system shall comply with the requirements of the National Fire Alarm Code, the Owner’s Inspection Authorities and with the Manufacturer's instructions.

1.13 WARRANTY
A. Provide a complete parts and labor warranty for twelve months from the date of final acceptance of the system by the Owner.
B. Provide a telephone response to Owner’s questions within 4 hours and on-site assistance within 24 hours.
C. Permit Owner’s Fire Alarm Technicians to perform temporary bypasses and emergency repairs on the system without voiding the warranty.
PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Acceptable Manufacturers and Models:
 1. EST Model EST-3 represented by Riverside Integrated Systems.
 2. Honeywell Model XLS3000.
 3. SimplexGrinnell Model 4100 Series.

2.2 SYSTEM COMMUNICATIONS
 A. The fire alarm control panel shall communicate with each addressable initiating and control device individually via shielded twisted pair signaling line circuits. EST SIGA-Loop, Honeywell Eclipse or FlashScan, or SimplexGrinnell MAPNET II or IDNET.
 B. Each signaling line circuit shall be capable of accessing up to 127/250 addressable devices.
 C. Each signaling line circuit shall allow up to 10,000 feet of wire length to the furthest addressable device.
 D. Communications shall use a broadcast polling protocol to allow tapping of the circuit except where Class A wiring is required. Taps shall be limited to 64 per loop.
 E. Communications shall be completely digital and shall include parity data bit error checking routines for address codes and check sum routines for the data transmission protocol.
 F. Each device shall be uniquely identified by a device address.
 G. There shall be no limit to the number of initiating devices which may be activated simultaneously.
 H. Each device shall be individually annunciated at the panel. Annunciation shall include the following conditions for each device.
 I. Alarm, supervisory or trouble condition.
 1. Open, short or ground.
 2. Device failure or incorrect device installed.

2.3 FIRE ALARM CONTROL PANEL
 A. The fire alarm control panel shall be modular with solid state, microprocessor based electronics. EST 3, Honeywell XLS3000, or SimplexGrinnell 4100 Series.
 B. The panel shall display only those primary controls and displays essential to operation during a fire alarm condition.
 C. The panel shall include a LCD digital display, with a minimum of 80 characters.
 1. The display shall be backlit for enhanced readability. It shall not be lit during an AC power failure unless an alarm condition occurs or there is keypad activity.
2. The display shall support both upper and lower case letters. Lower case letters shall be used for soft key titles and for prompting the user. Uppercase letters shall be used for system status information. A cursor shall be visible when entering information.

D. A panel audible signal shall sound during alarm, supervisory or trouble conditions. This audible signal shall sound differently during each condition to distinguish one condition from another. The audible signal shall also sound differently during each key press to provide audible feedback (chirp) indicating that the key has been pressed properly.

E. The system program shall be stored in a non-volatile flash EPROM memory within the panel. Loss of primary and secondary power shall not erase the program stored in memory.
 1. The program shall be capable of selective input/output control functions based upon AND'ing, OR'ing, NOT'ing, timing and special coded operations.
 2. The program shall enable initiating devices to be individually configured on site to provide either alarm and trouble, supervisory and trouble, alarm only, supervisory only, trouble only, current limited alarm, no alarm, normally closed device monitoring, a non-latching circuit or an alarm verification circuit.
 3. The program shall enable initiating devices to be disabled or enabled individually.

F. The panel or the field devices shall determine the alarm decision for each detector by comparing the detector value to stored values.
 1. The panel shall automatically maintain a constant smoke obscuration sensitivity in percent of smoke obscuration format for each detector.
 2. The panel shall maintain a moving average of each smoke detector's smoke chamber value to automatically compensate for dust and dirty conditions that could affect detection operation.
 3. The smoke obscuration sensitivity shall be adjustable to within 0.3 percent of either limit of the UL window (0.5 percent to 4.0 percent) to compensate for any environment.
 4. When a detector's average value reaches a predetermined value, a "MAINTENANCE ALERT" condition shall be audibly and visually indicated at the panel. The LED on the detector base shall glow steady giving a visible indication at the detector location. If a dirty detector is left unattended and its average value increases to a second predetermined value, a "TROUBLE" condition shall be indicated at the panel. To prevent nuisance alarms, these dirty conditions shall in no way decrease the amount of smoke obscuration necessary for system activation.
 5. The panel shall continuously perform an automatic self-test routine on each detector which shall functionally check detector electronics and ensure the accuracy of the obscuration values being transmitted to the panel. Any detector that fails this test shall indicate a "SELF TEST ABNORMAL" or "TROUBLE" condition at the panel.
6. Each detector shall be scanned by the panel for its type identification to prevent inadvertent substitution of another detector type. The panel shall operate with the installed device but shall initiate a "WRONG DEVICE" or "TROUBLE" condition until the proper type is installed or the programmed detector type is changed.

7. An operator at the panel, having a proper access level, shall have the ability to manually access the following information for each detector.
 a. Device type.
 b. Device status.
 c. Present average value.
 d. Peak detection values.
 e. Present sensitivity selected.
 f. Detector range (normal, dirty, etc.).

8. An operator at the panel, having a proper access level, shall have the ability to perform the following for each detector:
 a. Enable or disable the point.
 b. Clear peak detection values.
 c. Clear verification tally.
 d. Control a detector's relay driver output.

9. The panel shall be programmable to automatically change the sensitivity settings of each detector based on time-of-day and day-of-week (for example, to be more sensitive during unoccupied periods and less sensitive during occupied periods). There shall be seven sensitivity settings available for each detector.

10. The panel shall be programmable for a pre-alarm or two-stage function. This function allows an indication to occur when, for example, a detector with a 3 percent set point reaches a threshold of 1.5 percent smoke obscuration.

11. Smoke detectors shall be provided with the ability for alarm verification. When in alarm verification mode, only a verified alarm shall initiate the alarm sequence operation.
 a. The activation of a smoke detector shall initiate an alarm verification operation whereby the panel resets the activated detector and waits for a second alarm activation. If, within an adjustable time delay, a second alarm is reported from the same or any other smoke detector, the system shall process the alarm. If no second alarm occurs within the time delay, the system shall resume normal operation.
 b. The alarm verification shall operate only on smoke detector alarms. Other activated initiating devices shall be processed immediately. The alarm verification operation shall be selectable by device.
 c. The panel shall have the capability to display the number of times a device has gone into a verification mode.
 d. Detectors in alarm verification mode shall have the ability of being divided into different groups whereby any two activations from a group shall cause the panel to follow its programmed alarm sequence.

G. The panel shall have four pass code controlled access levels. Pass codes shall be entered using the panel key pad.

1. To maintain security when entering a pass code, the digits entered shall not be displayed.
2. When a correct pass code is entered, an "ACCESS GRANTED" message shall be displayed. The access level shall be in effect until the keypad is inactive for 10 minutes or the operator logs out.

3. Should an invalid code be entered, the operator shall be notified with a message and shall be allowed up to two more chances to enter a valid code. After three unsuccessful tries, an "ACCESS DENIED" message shall be displayed.

4. Access to a level shall only allow the operator to perform actions within that level and actions of lower levels, not actions of higher levels.

5. Access levels shall be associated with the following functions:
 a. Alarm silence.
 b. System reset.
 c. Set time and date.
 d. On/Off/Auto control selection.
 e. Manual control.
 f. Disable and enable circuits and devices.
 g. Clear historical logs.
 h. Walk test.
 i. Change alarm verification.
 j. Change detector sensitivity.
 k. Function keys.

6. An access level shall also be associated with acknowledge keys. If the operator presses an Acknowledge key with insufficient access, an error message shall be displayed. The points on the log shall scroll with each key press, but the points shall not be acknowledged.

H. The panel shall have the ability to store a minimum of 300 events in an alarm log plus a minimum of 300 events in a separate trouble log. These events shall be stored in a battery protected random access memory. Real time and date shall accompany history event recordings.

I. The panel shall supervise subordinate module LED's for burnout or disarrangement. Should a problem occur, the panel shall display the module and LED location numbers to facilitate location of that LED.

J. The panel shall have function keys programmed as follows for disabling and enabling circuits or groups of devices for maintenance or testing purposes. While circuits or devices are disabled, the panel shall indicate "TROUBLE".

DELETE THE FUNCTION KEYS THAT DON'T APPLY TO THIS PROJECT. DO NOT RENUMBER THE REMAINING FUNCTION KEYS.

1. F1: Disable smoke detectors by floor.
2. F2: Disable duct smoke detectors.
3. F3: Disable sprinkler system flow switches.
4. F4: Disable horns/strobes or speakers/strobes by floor.
5. F5: Disable beam detectors.
7. F7: Disable hood suppression systems.

K. The system shall be capable of being walk tested by one person.
1. The activation of an initiating device under test shall be silently logged as an alarm or supervisory condition in the historical log. The panel shall automatically reset itself after logging the abnormal condition.

2. The momentary disconnection of an initiating device or notification appliance shall be silently logged as a trouble condition in the historical log. The panel shall automatically reset itself after logging the trouble condition.

3. The walk test sequence shall have the ability to activate the notification appliances for a maximum of 2 seconds upon the activation of an initiating device under test. If this option is selected, any momentary opening of the initiating device circuit or a notification appliance circuit shall cause the notification appliances to sound for 4 seconds to indicate the trouble condition.

4. Should the walk test mode be on for an inappropriate amount of time, the panel shall automatically revert to normal mode.

5. Should an abnormal condition occur from an active point not in walk test mode, the system shall perform its standard programmed alarm, supervisory or trouble sequences.

L. The panel enclosure shall be equipped with locks and transparent door panels providing freedom from tampering yet allowing full view of the various lights and controls.

2.4 NODE AND NAC PANELS

A. Node and NAC panels shall be modular with solid state, microprocessor based electronics, operator interfaces, power supplies, audio generators, amplifiers, battery chargers and batteries as required. All components shall be supervised. EST 3, Honeywell XLS3000, or SimplexGrinnell V4100.

2.5 BATTERIES

A. Batteries shall be lead calcium and supervised so that a failure produces a "TROUBLE" signal.

2.6 REMOTE ANNUNCIATOR

A. The remote annunciator shall duplicate the backlit LCD display; the alarm acknowledge, supervisory acknowledge, trouble acknowledge, alarm silence, and system reset pushbuttons; the alarm, supervisory, and trouble audible signals; the alarm, supervisory, trouble, and power "on" LED's; and the programmable function keys of the fire alarm control panel. A key "enable" switch or door lock, keyed to match the fire alarm control panel door lock, shall permit activating or deactivating the controls. EST 3-ANN, Honeywell XLS-NCA, or SimplexGrinnell 4603-9101.

B. A remote microphone shall be included when the fire alarm system includes emergency voice/alarm communications, along with the same pushbuttons as the fire alarm control panel for selecting pre-recorded voice messages, and the same controls to choose total building or selected areas communications.
2.7 ADDRESSABLE SPOT DETECTOR BASES

A. Spot detector mounting bases shall be individually addressable, suitable for two wire operation, with a twist-lock head locking feature a DIP switch or electronic addressing means, and an LED that provides power "on", alarm and trouble indications. The bases shall be listed for ceiling and wall mounting. Removal of the detector head shall cause a trouble condition at the panel. EST SIGA-SB, Honeywell 14507371-001, or SimplexGrinnell 4098-9792.

B. Where shown, the bases shall include an auxiliary relay that is controlled from the panel. EST SIGA-RB, Honeywell B244RB, or SimplexGrinnell 4098-9791 base with 2098-9737 relay.

C. In sleeping rooms, the base shall include a piezoelectric sounder that is controlled from the panel. EST SIGA-AB4, Honeywell B501BHT, or SimplexGrinnell 4098-9794.

D. When bases are not in plain view, bases shall be connected to remote alarm indicators mounted in plain view at 48 inches above the floor.

2.8 MULTISENSOR SMOKE DETECTOR HEADS

A. Multi-sensor type smoke detector heads shall include sampling and reference ionization chambers with a single radioactive source, a photoelectric sensor and a programmable heat detector. The detectors shall support at least four levels of sensitivity selectable at the panel and 360 degree smoke entry. EST SIGA-IPHS, Honeywell TC806B1084, or SimplexGrinnell 4098-9754.

2.9 PHOTOELECTRIC SMOKE DETECTOR HEADS

A. Photoelectric type smoke detector heads shall include a pulsed LED light source and a silicon photodiode receiver, at least seven levels of sensitivity selectable at the panel, an integral insect screen and 360 degree smoke entry. This type of detector shall be installed in all duct detectors. EST SIGA-PS or SIGA-SD, Honeywell TC806B1076, or SimplexGrinnell 4098-9714.

2.10 HEAT DETECTOR HEADS

A. Heat detector heads shall include combination rate-of-rise and rate compensated fixed temperature sensing, two levels of rate-of-rise sensitivity selectable at the panel, and an independent 135 degrees F fixed temperature set point. Heat detector heads shall be self-restoring. EST SIGA-HRS, Honeywell TC808B1066, or SimplexGrinnell 4098-9733.

B. Heat detector heads for steam tunnels, cage wash areas and dish machine areas shall have a 135 degrees F fixed temperature set point and shall be self-restoring. EST SIGA-HFS, Honeywell TC808B1041 or SimplexGrinnell 4098-9733.
2.11 DUCT DETECTORS

A. Duct detectors shall be individually addressable and consist of a housing, sampling tubes, a baffle and a detachable detector head. Duct detectors shall include an alarm LED, a local test switch, and an auxiliary SPDT relay for ventilation system control. Duct detectors shall be resettable by actuating the panel reset pushbutton. The sampling tubes shall be capable of being cleaned through the housing cover. EST SIGA-SD DH100ACLP, Honeywell TC806D1056, SimplexGrinnell 4098-9756, or System Sensor BK-DH100ACLP.

B. The detector heads shall be photoelectric as specified above, but shall be capable of accepting ionization detector heads.

C. When not in plain view, duct detectors shall include remote alarm indicators and test switches mounted in plain view at 48 inches above the floor.

2.12 BEAM DETECTORS

A. Photoelectric projected beam detectors shall be individually addressable and consist of separate transmitter and receiver units capable of long range coverage of up to 350 feet. Beam detectors shall include alarm and trouble dry auxiliary contacts, and normal, alarm and trouble LED status indicators. Beam detectors shall include internal bore sights, automatic calibration, six sensitivity settings, automatic compensation for temperature and lens contamination, and a trouble indication upon either a total obscuration or an obscuration of 50 percent of the alarm set point. Beam detectors shall be suitable for four wire operation utilizing 24 volt DC power from the panel, and resettable by actuating the panel reset pushbutton. EST EC50R, Honeywell TC847A1004, or SimplexGrinnell Fire Ray Series.

2.13 MANUAL PULL STATIONS

A. Manual pull stations shall be individually addressable, suitable for two wire operation, with a high impact red Lexan body and raised white lettering. Stations shall include an ADA compliant single action operating mechanism with a mechanical latch to hold an operated station open until reset. EST SIGA-270, Honeywell S464G1007, or SimplexGrinnell 4099-9001.

B. Reset shall be accomplished through use of a key common to the panel or a small flat-blade screwdriver. Stations which use allen wrenches or special tools to reset are not acceptable. The point of reset shall be front accessible so stations with tamper-resistant covers can be reset easily.
2.14 MONITOR MODULES

A. Monitor modules for individual two wire contact monitoring shall be individually addressable, suitable for two wire operation, with a DIP switch or electronic addressing means, and a programmable latch feature for monitoring momentary contacts. Monitor modules shall monitor a single normally open dry contact using a Class B, Style B, initiating device circuit. EST SIGA-CT1 or SIGA-CT2, Honeywell TC809A1059, or SimplexGrinnell 4090-9001.

B. Monitor modules for zone or four wire device monitoring shall be individually addressable, suitable for four wire operation utilizing 24 volt DC power from the panel, and with a DIP switch or electronic addressing means. Zone monitor modules shall monitor multiple normally open dry contacts using a Class B, Style B, two wire initiating device circuit, or monitor a four wire device using a Class B, Style D, four wire initiating device circuit. EST SIGA-UM, Honeywell TC809, or SimplexGrinnell 2190-9156 or 4090-9101.

2.15 CONTROL MODULES

A. Control modules shall be individually addressable, with a DIP switch or electronic addressing means. Control modules shall provide a Form C contact rated .5 amps at 120 volts AC or 2 amps at 28 volts DC resistive that are controlled by the panel. EST SIGA-CR, Honeywell TC801N1013, or SimplexGrinnell 4090-9002.

2.16 HORNS

A. Horns shall be electronic, rated 24 volts DC, with a piezoelectric driver set to produce a slow whoop sound level of 101 dBA at 10 feet, with a red, semi-flush body capable of wall or ceiling mounting. EST 757-1A or Genesis Series, Honeywell HR, or SimplexGrinnell 4901-9820.

DELETE THE FOLLOWING PARAGRAPH IF NOT APPLICABLE.

B. Horns in rodent rooms shall be set to generate a slow whoop or warble sound with a peak frequency below 500 Hz. Horns shall be of heavy-duty industrial construction and shall be UL listed for indoor and outdoor applications. EST Model 5530MD-24AW.

2.17 SPEAKERS

A. Speakers shall be rated 125 to 12,000 Hertz, include four taps rated at from 1/4 to 2 watts, produce a sound level of 82 dBA at 10 feet when set at the 1/2 watt tap, and with a semi-flush body capable of wall or ceiling mounting. EST 757-1A-S25W or Genesis Series, Honeywell SP, or SimplexGrinnell 4902-9703 (wall mount) or 4902-9721 (ceiling mount).

B. Speakers for locations with high ambient noise may be high efficiency horns rated 500 to 6,000 Hertz minimum, 10 watts minimum, include four or more taps, produce a sound level of 106 dBA minimum at 1 meter when set at the 1 watt tap, and be capable of wall or ceiling mounting. EST/GE HPSA15, Honeywell/GE HPSA15, or SimplexGrinnell EA0012 ABS.
2.18 STROBES

A. Strobes shall be rated 15, 30, 60, 75, 110 or 177 candela as shown for proper illuminance, with a 1 Hertz flash rate, Xenon flash tube, white body, clear Lexan lens with red "FIRE" or international fire symbol lettering, capable of being synchronized, and capable of wall or ceiling mounting. EST Genesis Series, Honeywell SR/SCR, or SimplexGrinnell 4906 Series.

2.19 COMBINATION HORN/STROBES AND SPEAKER/STROBES

A. Combination horn/strobes and speaker/strobes shall consist of the horns, speakers and strobes specified above, but combined on a single mounting plate. Combination units used outdoors and in wet areas shall be waterproof and mounted to waterproof back boxes. EST Genesis Series, Honeywell SpectrAlert Advance Series, or SimplexGrinnell 4906 Series.

2.20 DOOR HOLD-OPEN POWER SUPPLY

A. The door hold-open power supply shall produce 24 volts DC of sufficient amperage to provide 0.4 amps of current to every door hold-open device being controlled. The power supply shall be supervised and capable of withstanding the inrush current that will occur when the door hold-open devices are energized.

B. The output of the power supply shall be distributed by individually fused circuits. Fuse each circuit at 5 amps.

C. The power supply shall release the held open doors upon a fire alarm or an AC power failure.

2.21 EMERGENCY VOICE/ALARM COMMUNICATIONS

A. Emergency voice/alarm communications shall include audio control modules for alarm tone and voice message generation, a minimum of six pushbuttons for selecting pre-recorded voice messages, controls to choose total building or selected areas communications, audio amplifiers, a local microphone, and remote microphones in remote annunciators and cabinets. All of the components except for the remote microphones shall be located in or adjacent to the fire alarm control panel.

B. The audio control module default mode shall provide for automatic total building fire alarm evacuation. The audible evacuation alarm signal shall consist of three slow whoop alarm tones followed by a fire alarm voice evacuation message. At the end of each voice evacuation message, the alarm tones shall resume. The alarm tones and voice evacuation message shall sound alternately until the alarm silence pushbutton at the fire alarm control panel or remote annunciator has been pressed. All audio signals and messages shall be digitally transmitted between nodes.

C. The audio control modules shall provide for manual total building or selected area pre-recorded voice message generation by pushing a pre-recorded voice message pushbutton. One pushbutton shall initiate the fire alarm voice evacuation message, and the other pushbuttons shall initiate Owner-defined pre-recorded voice messages.
D. The audio control modules shall provide for manual total building or selected areas communications. Upon keying of the microphone, a three second continuous alert tone shall sound over the speakers indicating a voice message will occur.

E. The alarm tones shall be digitally generated by programmable software so that changes can be made without component rewiring. The voice messages shall be stored digitally in non-volatile EPROM memory.

DELETE THE FOLLOWING PARAGRAPH IF NOT APPLICABLE.

F. The alarm tone for rodent rooms only shall be produced by a separate audio control module and amplifier that generate a slow whoop or warble sound with a peak frequency below the hearing range of rodents (i.e. 500 Hz).

G. Audio amplifiers shall have a frequency response of 125 Hz to 12,000 Hz minimum.

H. Microphones shall be of a hand-held, push-to-talk, noise-canceling type with a frequency range of 200 Hz to 4000 Hz and a self-winding five foot coiled cable. An LED shall indicate the microphone push-to-talk pushbutton has been pressed and the speaker circuits are ready for transmission.

I. Remote microphones shall be enclosed in remote annunciator cabinets or wall-mounted cabinets as shown on the plan drawings, with the same pushbuttons for selecting pre-recorded voice messages, and lockable doors. Remote microphones shall duplicate the manual voice transmission capability of the local microphone at the fire alarm control panel. The fire alarm control panel microphone shall have priority over any remote microphones.

The remote microphone in a remote annunciator cabinet shall provide for total building or selected areas communications.

The remote microphone and cabinet at the fire alarm system head end equipment in the UHFCC shall provide for total building or selected areas communications.

J. Should a Fire Department telephone communication system be provided, the telephones system shall be capable of being patched to the emergency voice/alarm communications system. Manual operation shall be controlled at the fire command center.

2.22 FIRE DEPARTMENT TELEPHONE COMMUNICATIONS

A. Fire Department telephone communications shall consist of a minimum of eight dedicated communications circuits between a fire command center communications panel and remotely located emergency telephone jacks, a master telephone handset and five pluggable telephone handsets.
B. The communications panel shall include a master telephone controller for processing of two-way communications. This module shall include a circuit selector switch and "Call" and "Trouble" LED indicators for each circuit, an audible device for call and trouble signaling, a trouble silence switch with ring-back, and an LED trouble indicator. Circuit supervision modules shall be included to electrically supervise for shorts, opens, and grounds of circuit wiring.

C. The system shall be capable of handling single or simultaneous conversations with all telephones connected into the system. The circuits shall be so designed to prevent static, hum, or other interferences to clear, intelligible two-way conversations. The communications shall be transported digitally between devices.

D. The act of plugging a handset into an emergency telephone jack shall cause the appropriate circuit indicator LED to flash and a distinctive audible device to sound at the communications panel. The subsequent picking up of the master telephone and selection of the proper circuit shall silence the pulsing sound, cause the circuit indicator LED to latch on, and couple the remote telephone to the master telephone. Two or more telephones shall be capable of being connected into an active conversation at the discretion of the operator.

E. Attempting to use a subsequent telephone on the same circuit shall not cause the pulsing sound to activate if any two-way communications are already established. Any new circuits activated shall, however, cause their circuit indicator LED’s to flash until acknowledged.

F. Unplugging the handsets in use and returning the related circuit selector switches to the normal position shall cause the restoration of normal supervisory functions. If any remote telephone remains plugged in, the appropriate circuit indicator LED shall flash and the pulsing sound shall resume at the communications panel.

G. The master telephone handset shall be recessed within a protective enclosure at the communications panel.

H. A single line circuit shall be provided to a jack in each stairwell at each floor, in each elevator car, in each elevator lobby, at each area of refuge, at the emergency generator(s) and at the fire pump location. Emergency telephone jacks shall be mounted on a stainless steel single gang plate engraved with the words "Fire Emergency Telephone".

I. Furnish an emergency telephone jack for installation in each elevator car. Wiring from the elevator controls to each elevator car and installation of the jacks will be provided by the elevator contractor.

J. Provide five pluggable emergency telephone handsets with self-winding five foot cords within a storage cabinet mounted at the fire command center. Key the cabinet to match the fire alarm control panel.
PART 3 - EXECUTION

3.1 SYSTEM INTERRUPTIONS

A. Coordinate with the UMHHC Facility Command Center (734-936-4000) before performing any work affecting an existing fire alarm system. Operating, programming, modifying or impairing an existing system without approval of the UMHHC Facility Command Center is strictly prohibited.

B. When renovating a fire alarm system, test the system to document its condition before changes are made. Maintain operation of fire alarm system devices outside of the work area.

C. When replacing a fire alarm system, maintain operation of the existing system until acceptance of the new system. If operation of the existing system cannot be maintained and the building is occupied, provide a 24 hour/day fire watch until the new system is accepted.

3.2 INSTALLATION

FOR NEW FIRE ALARM PROJECTS, SELECT ONE OF THE FOLLOWING THREE PARAGRAPHS (A, B OR C) AS DIRECTED BY THE PROJECT MANAGER.

FOR FIRE ALARM RENOVATION PROJECTS, SELECT THE PARAGRAPH THAT MATCHES THE EXISTING INSTALLATION.

A. Provide wiring in conduit in accordance with Sections 260533 and 260513, and Manufacturer’s instructions.

B. Provide wiring in conduit or provide fire alarm-rated MC cables in accordance with Sections 260533 and 260513, and Manufacturer’s instructions.

C. Provide wiring and raceways as follows and in accordance with Sections 260533 and 260513 and Manufacturer’s instructions.

1. Concealed in walls, exposed on walls up to 8’ AFF, and above non-accessible ceilings - provide wiring in conduit.
2. Above accessible ceilings and above 8’ AFF in unfinished spaces - provide open wiring in J-hooks. Provide conduit sleeves where open wiring penetrates walls and floors.

D. For systems that provide partial evacuation or relocation of occupants rather than full evacuation, protect power supply and notification appliance circuits from attack by fire until they enter the notification zone they serve. Provide 2-hour rated cable assemblies or protect circuits in 2-hour rated shafts, enclosures or sprinklered stairwells in accordance with Sections 260533 and 260513.

E. Circuits may be T-tapped only where shown on the manufacturer's wiring diagrams.

F. Provide waterproof back boxes with gaskets for devices and appliances installed outdoors or in wet or wash-down areas.

G. Paint fire alarm junction boxes, covers and fittings red or provide red conduit throughout, except fire alarm raceways exposed in finished areas may be painted to match wall color.
H. Modifications to fire alarm control panels, node panels, NAC panels and remote annunciator panels shall be made by a Manufacturer's Representative.

I. Final connections to the fire alarm system components and system programming shall be performed by Fire Alarm Technicians with NICET Level II or higher certification.

J. Label fire alarm panels with the room numbers, electrical panel numbers and circuit breaker numbers feeding them.

K. Paint the handles of circuit breakers feeding fire alarm panels red, and install handle locks.

L. Smoke and heat detectors shall not be installed until after construction clean-up is completed.
 1. When renovating an existing system, remove and store existing detectors during construction activities.
 2. Detectors installed prior to construction clean-up shall be cleaned by the manufacturer or replaced.

3.3 TESTING

A. Demonstrate complete operation of the fire alarm system in accordance with NFPA 72, NFPA 101 (classroom, in-patient medical and Housing projects only), the Michigan Building Code, and Manufacturer's instructions. Notify the Owner's Representative 3 working days in advance of the test.
 2. Especially on fire alarm renovation projects, the U-M Fire Protection Shop may participate in or direct the testing activities.
 3. On classroom, in-patient medical and housing projects, also include an Inspector from the Michigan Bureau of Fire Services.

B. Submit a signed and dated NFPA 72 test report to the Electrical Inspector prior to acceptance of the fire alarm system by the Owner.

C. On classroom, in-patient medical and Housing projects, also submit a signed and dated FS-12A Form to the Michigan Bureau of Fire Services.

3.4 COMMISSIONING

A. Perform Commissioning activities per Related Sections above.

3.5 TRAINING

DELETE A AND B IF IT IS KNOWN IN ADVANCE THAT THIS TRAINING HAS ALREADY OCCURRED.
A. Provide the Owner’s Fire Alarm Technicians with classroom training on the operation and maintenance of this model of system. This training shall be by the Manufacturer and shall be the same training as given to the Manufacturer's field service technicians. The University will pay the travel costs to the Manufacturer's training site. If the Owner's Technicians have already received operations and maintenance training from the manufacturer on this model of system, this training requirement will be waived.

B. Provide the Owner’s Fire Alarm Technicians with classroom training on the programming of this model of system. This training shall be by the Manufacturer and shall be the same training given to the Manufacturer's field service technicians. The University will pay the travel costs to the Manufacturer's training site. If the Owner's Technicians have already received programming training on this model of system, this training requirement will be waived.

C. Train the Owner's Fire Alarm Technicians on unfamiliar components installed in this system.

D. Walk the Owner's Fire Alarm Technicians through the building and identify the locations of fire alarm devices hidden from plain view.

E. Train UMHHC Security and the OSEH Fire Inspectors on the basic operation of the system, including how to acknowledge audible notification appliances after an alarm.

DELETE THE FOLLOWING TWO PARAGRAPHS WHEN EMERGENCY VOICE/ALARM COMMUNICATIONS IS NOT INCLUDED.

F. Train UMHHC Security and the OSEH Fire Inspectors on how to override the smoke control systems, on how to use the emergency voice/alarm communications, and on how to use the Fire Department telephone communications systems. Invite representatives from the Ann Arbor Fire Department to this training.

G. Train the Facility Manager on how to use the emergency voice/alarm communications system.

END OF SECTION 283102