MECHANICAL REFERENCE NOTES:

- Provide 110V dedicated circuit for chemical panel and city blowdown magnet.
- Provide lockable 120V switch located at/near city water magnet.
- The cooling tower drain and overflow drain should be connected before the blowdown meter.
- Pipe between the pumps and the chillers requires a tap with a ball valve and check valve.
- Connection should be from the separator drain to provide periodic solids blowdown.
- Schedule should be included with control drawing sheets.
- Refer to schedule below for required blowdown pipe sizes. Indicate pipe sizes on project drawings.
- Provide additional isolation valve at each supply sequence.
- Refer to schedule below for pipe size sequence.
- Condenser water system includes a centrifugal or coalescing separator; the blowdown connection should be from the separator drain to provide periodic solids blowdown.
- Provide DDC monitors general fault alarm and water conductivity.
- Retractable injection quill assembly:
 - See detail A
 - Obtain training before use
 - Engraved plastic label: Retractable injection quill assembly
 - No scale
 - Module: 15710
 - Date: 05/28/13
 - Description:
 - Condenser Water Treatment Equipment Diagram (Solid Chemical Method)
 - Condenser Water Treatment Equipment Diagram (Bromine Method)

CONDENSER WATER TREATMENT EQUIPMENT DIAGRAM (SOLID CHEMICAL METHOD)

- Condenser water treatment equipment diagram (solid chemical method)
- Designer notes (delete from contract drawings):
 - All isolation valves except as noted.
 - All isolation valves provide is isolation valve at each connection point.
 - Provide connection at every connection point.
 - Motor operated ball valve.
 - PVC clear plastic strainer from cooling tower drain and basin overflow.
 - Solid corrosion inhibitor dissolver.
 - Flow indicator.
 - Corrosion coupon rack.
 - Chemical feed pump.
 - See detail A
 - Refer to other drawings for tower blowdown connection point.
 - Brake feeder tank.
 - Motor operated ball valve.
 - PVC clear plastic strainer from cooling tower drain and basin overflow.
 - Solid corrosion inhibitor dissolver.
 - Flow indicator.
 - Corrosion coupon rack.
 - Chemical feed pump.
 - See detail A
 - Refer to other drawings for tower blowdown connection point.

SCHEDULE

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" COPPER</td>
<td>1</td>
</tr>
<tr>
<td>1" PVC SCH 80</td>
<td>2</td>
</tr>
<tr>
<td>3/4" PVC SCH 80</td>
<td>3</td>
</tr>
<tr>
<td>1/2" COPPER</td>
<td>4</td>
</tr>
<tr>
<td>1/2" PVC SCH 80</td>
<td>5</td>
</tr>
<tr>
<td>1/4" COPPER</td>
<td>6</td>
</tr>
</tbody>
</table>

Additional Information:

- Referenced Details/Schedules:
 - Condenser Water Treatment Equipment Diagram (Bromine Method)

References:

- The University of Michigan
- Architect/Engineers
- Built by: The University of Michigan
- Date: 05/28/13

Approval:

- Project Manager
- Date: 05/28/13